X20(c)DOF322

1 General information

The module is equipped with 16 outputs for 1-wire connections. The module is designed for source output wiring.

- 16 digital outputs
- Source connection
- 1-wire connections
- Integrated output protection

2 Coated modules

Coated modules are X20 modules with a protective coating for the electronics component. This coating protects X20c modules from condensation and corrosive gases.

The modules' electronics are fully compatible with the corresponding X20 modules.

For simplification purposes, only images and module IDs of uncoated modules are used in this data sheet.

The coating has been certified according to the following standards:

- Condensation: BMW GS 95011-4, 2x 1 cycle
- Corrosive gas: EN 60068-2-60, Method 4, Exposure 21 days

3 Order data

Table 1: X20DOF322, X20cDOF322 - Order data

4 Technical data

Product ID	X20DOF322	X20cDOF322		
Short description				
I/O module	16 digital outputs 24 VD	C for 1-wire connections		
General information				
B&R ID code	0xC0EA	0xDD4C		
Status indicators	I/O function per channel, op	erating state, module status		
Diagnostics				
Module run/error	Yes, using status	LED and software		
Outputs	Yes, using status LED and s			
Power consumption				
Bus	0.28	B W		
Internal I/O	0.95	5 W		
Additional power dissipation caused by the actua-	+0.5	6 W		
tors (resistive) [W] 1) Electrical isolation				
Channel - Bus	Ye			
Channel - Channel				
Certification	11			
CE	Ve	es		
cULus	Yes	-		
ATEX Zone 2 ²⁾	Yes	_		
KC	Yes	-		
GL	Yes	-		
LR	Yes	-		
GOST-R	Ye	28		
Digital outputs				
Design	FET positiv	e switching		
Nominal voltage	24 \			
Switching voltage	24 VDC -15 % / +20 %	24 VDC -15% / +20%		
Nominal output current		5A		
Total nominal current	8	A		
Connection type	1-wire connections			
Output circuit	Source			
Output protection	Thermal cutoff if overcurrent or short circuit occurs (see value "Peak short circuit current") Internal inverse diode for switching inductive loads (see section "Switching inductive loads")			
Diagnostic status	Output monitoring with 10 ms delay			
Leakage current when switched off	51	μA		
R _{DS(on)}	140	mΩ		
Peak short circuit current	<3	3 A		
Switching on after overload or short circuit cutoff	Approx. 10 ms (depends o	n the module temperature)		
Switching delay ³⁾				
0 -> 1	<30	0 µs		
1 -> 0	<30	0 µs		
Switching frequency				
Resistive load ³⁾		500 Hz		
Inductive load	See section "Switch			
Braking voltage when switching off inductive loads		5 VDC		
Isolation voltage between channel and bus	500	V _{eff}		
Operating conditions				
Mounting orientation				
Horizontal	Ye			
Vertical	Ye	es		
Installation at elevations above sea level				
0 to 2000 m	No limi			
>2000 m	Reduction of ambient temperature by 0.5°C per 100 m			
EN 60529 protection	IP	20		
Environmental conditions				
Temperature				
Operation	0E to	60°C		
Horizontal installation Vertical installation	-25 to -25 to			
Derating	-25 to See sectior			
Storage	-40 to			
Transport	-40 to			
	-+0 10			

Table 2: X20DOF322, X20cDOF322 - Technical data

X20(c)DOF322

Product ID	X20DOF322	X20cDOF322			
Relative humidity		·			
Operation	5 to 95%, non-condensing	Up to 100%, condensing			
Storage	5 to 95%, non-condensing				
Transport	5 to 95%, no	5 to 95%, non-condensing			
Mechanical characteristics					
Note Order 1x X20TB1F terminal block separately Order 1x X20TB1F terminal block separately Order 1x X20BM11 bus module separately Order 1x X20CBM11 bus module separately Order 1x X20CBM11 bus module separately					
Spacing	12.5 ^{+0.2} mm				

Table 2: X20DOF322, X20cDOF322 - Technical data

Number of outputs x R_{DS(on)} x Nominal output current² (A calculation example can be found on the B&R website in the download area for the module.) 1) 2) Ta min.: 0°C

Ta max.: See environmental conditions

3) At loads $\leq 1 \text{ k}\Omega$

5 Status LEDs

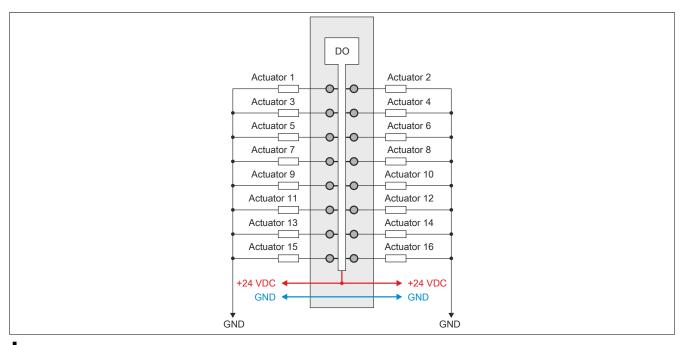
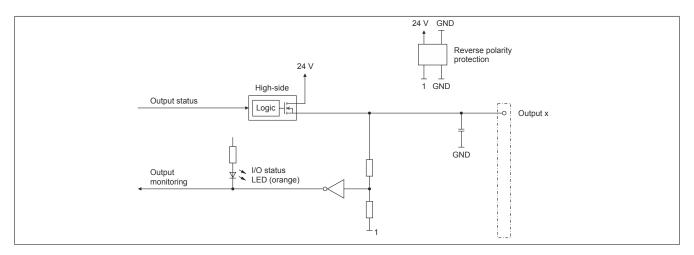

For a description of the various operating modes, see section "re LEDs" in chapter 2 "System characteristics" of the X20 system user's manual.

Figure	LED	Color	Status	Description
	S	Green	Off	Module supply not connected
			Single flash	RESET mode
			Blinking	PREOPERATIONAL mode
s 3 4			On	RUN mode
CC 5 6 7 8		Red	Off	Module supply not connected or everything OK
9 10 9 11 9 11 11 12 9 13 14			Single flash	Warning/Error on an I/O channel. Level monitoring for digital outputs has been triggered.
× 15 16		Red on / Green	single flash	Invalid firmware
	1 - 16	Orange		Output status of the corresponding digital output

6 Pinout

	X20 D0 F32 0 0 F32 0 F		
DO 1		DO 2	
DO 3		DO 4	
DO 5		DO 6	
DO 7		DO 8	
DO 9		DO 10	
DO 11		DO 12	
DO 13		DO 14	
DO 15		DO 16	

7 Connection example

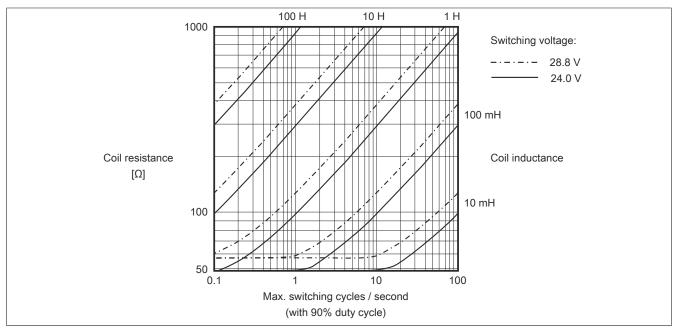


Caution!

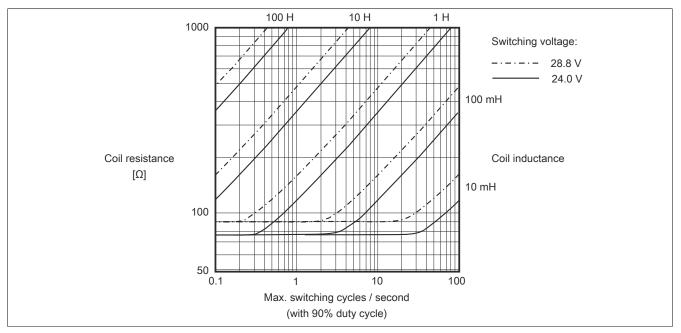
If the module is operated outside of specifications, the output current can increase above the maximum permissible nominal current. This applies to individual channels and also to the summation current for the module.

Therefore sufficient cable cross sections or external safety measures must be used.

8 Output circuit diagram


9 Derating

There is no derating when operated below 55°C.


When operated at temperatures above 55°C, the maximal total current per channel is limited to 0,35 A

10 Switching inductive loads

Environmental temperature: 55°C, all outputs with the same load

Environmental temperature: 60°C, all outputs with the same load

Information:

If the maximum number of operating cycles per second is exceeded, an external inverse diode must be used.

Operating conditions outside of the area in the diagram are not permitted!

11 Register description

11.1 General data points

In addition to the registers listed in the register description, the module also has other more general data points. These registers are not specific to the module but contain general information such as serial number and hardware version.

These general data points are listed in the "General data points" section of chapter 4 "X20 system modules" in the X20 system user's manual.

11.2 Function model 0 - Standard

Register	Fixed offset	offset Name Data type		R	ead	Wi	rite
				Cyclic	Acyclic	Cyclic	Acyclic
	0	DigitalOutput	UINT			•	
2	0	Switching state of digital outputs 1 to 8	USINT				
		DigitalOutput01	Bit 0				
		DigitalOutput08	Bit 7				
3	1	Switching state of digital outputs 9 to 16	USINT				
		DigitalOutput09	Bit 0				
		DigitalOutput16	Bit 7				
	2	StatusDigitalOutput	UINT		•		
30	2	Status of digital outputs 1 to 8	USINT				
		StatusDigitalOutput01	Bit 0				
		StatusDigitalOutput08	Bit 7				
31	3	Status of digital outputs 9 to 16	USINT				
		StatusDigitalOutput09	Bit 0				
		StatusDigitalOutput16	Bit 7				

Fixed modules require their data points to be in a specific order in the X2X frame. Cyclic access occurs according to a predefined offset, not based on the register address.

Acyclic access continues to be based on the register numbers.

11.3 Function model 254 - Bus Controller

Register	Offset ¹⁾	Name	Data type	R	ead	W	rite
				Cyclic	Acyclic	Cyclic	Acyclic
2	0	Switching state of digital outputs 1 to 8	USINT			•	
		DigitalOutput01	Bit 0				
		DigitalOutput08	Bit 7				
3	1	Switching state of digital outputs 9 to 16	USINT				
		DigitalOutput09	Bit 0				
		DigitalOutput16	Bit 7				
30	-	Status of digital outputs 1 to 8	USINT		•		
		StatusDigitalOutput01	Bit 0				
		StatusDigitalOutput08	Bit 7				
31	-	Status of digital outputs 9 to 16	USINT				
		StatusDigitalOutput09	Bit 0				
		StatusDigitalOutput16	Bit 7				

1) The offset specifies where the register is within the CAN object.

11.3.1 CAN I/O bus controller

The module occupies 2 digital logical slots on CAN-I/O.

11.4 Digital outputs

The output status is transferred to the output channels with a fixed offset (<60 μ s) in relation to the network cycle (SyncOut).

11.4.1 Switching state of digital outputs 1 to 16

Name: DigitalOutput DigitalOutput01 to DigitalOutput16

The switching state of digital outputs 1 to 16 are stored in this register.

Function model 0 - Standard only:

The "Packed outputs" setting in the Automation Studio I/O configuration is used to determine whether all of these registers' bits should be set up individually as data points in the Automation Studio I/O mapping ("DigitalOutput01" through "DigitalOutput16") or whether these registers should be displayed as an individual UINT data point ("DigitalOutput").

Data type	Value	Value
UINT	0 to 65535	Packed outputs = on
USINT	See bit structure	Packed outputs = off or function model <> 0 - Standard

Bit structure:

Register 2, Offset 0:

Bit	Name	Value	Information
0	DigitalOutput01	0	Digital output 01 reset
		1	Digital output 01 set
7	DigitalOutput08	0	Digital output 08 reset
		1	Digital output 08 set

Register 3, Offset 1:

Bit	Name	Value	Information
0	DigitalOutput09	0	Digital output 09 reset
		1	Digital output 09 set
7	DigitalOutput16	0	Digital output 16 reset
		1	Digital output 16 set

11.5 Monitoring status of the digital outputs

On the module, the output states of the outputs are compared to the setpoint states. The control of the output driver is used for the setpoint states.

A change in the output state resets monitoring for that output. The status of each individual channel can be read. A change in the monitoring status generates an error message.

11.5.1 Status of digital outputs 1 to 16

Name: StatusDigitalOutput StatusDigitalOutput01 to StatusDigitalOutput16

The status of digital outputs 1 to 16 is mapped in this register.

Function model 0 - Standard only:

The "packed outputs" setting in the Automation Studio I/O configuration is used to determine whether all of these registers' bits should be set up individually as data points in the Automation Studio I/O mapping ("StatusDigitalOutput01" through "StatusDigitalOutput16") or whether these registers should be displayed as an individual UINT data point ("StatusDigitalOutput").

Data type	Value	Information
UINT	0 to 65535	Packed outputs = on
USINT	See bit structure	Packed outputs = off or function model <> 0 - Standard

Bit structure:

Register 30, Offset 1:

Bit	Name	Value	Description
0	StatusDigitalOutput01	0	Channel 01: No error
		1	Channel 01:
			 Short circuit or overload Channel switched on and missing I/O power supply Channel switched off and external voltage applied on channel
7	StatusDigitalOutput08	0	Channel 08: No error
		1	Channel 08: Short circuit or overload

Register 31, Offset 2:

Bit	Name	Value	Information
0	StatusDigitalOutput09	0	Channel 09: No error
		1	Channel 09:
			 Short circuit or overload Channel switched on and missing I/O power supply Channel switched off and external voltage applied on channel
7	StatusDigitalOutput16	0	Channel 16: No error
		1	Channel 16: Short circuit or overload

11.6 Minimum cycle time

The minimum cycle time defines how far the bus cycle can be reduced without communication errors occurring. It should be noted that very fast cycles decrease the idle time available for handling monitoring, diagnostics and acyclic commands.

Minimum cycle time			
100 µs			

11.7 Minimum I/O update time

The minimum I/O update time defines how far the bus cycle can be reduced while still allowing an I/O update to take place in each cycle.

Minimum I/O update time Equal to the minimum cycle time